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ABSTRACT

Traditional robust principle component analysis (RPCA)
has a high computational cost because RPCA needs to calcu-
late the singular value decomposition of large matrices. To
address this issue, this paper proposes a matrix-factorization-
based RPCA (MFRPCA) model. MFRPCA has high compu-
tation efficiency while improving the robustness and flexibil-
ity of traditional RPCA using a non-convex low-rank approx-
imation. Experiment results on challenging datasets demon-
strate superior performance of MFRPCA compared with sev-
eral advanced low-rank reconstruction methods.

Index Terms— Robust PCA, Matrix factorization, Non-
convex regularizer, Background subtraction.

1. INTRODUCTION

Low-rank matrix approximation (LRMA), aiming to recon-
struct a low-rank matrix L from the noisy data D ∈ Rm×n,
has gained increasing interest in the societies of computer vi-
sion, image and video processing. For example, the moving
objects detection as a basic operation in video analysis aims
at subtracting the “foreground” such as pedestrians and cars
from a set of video named “background”. Principal compo-
nent analysis (PCA) as a classical LRMA method is brittle to
non-Gaussian noise (outliers). To address this shortcoming,
Candès et al. [1] developed robust PCA (RPCA), which can
be expressed in (1)

min
L,S

rank(L) + λ‖S‖0, s.t. D = L+ S. (1)

Where L is a low-rank matrix, while S is a sparse matrix such
as outliers. For example, L represents the recovered hyper-
spectral images (HSI) as shown in Section 3.3 and S denotes
the impulse noise, stripes, dead lines, and many others. How-
ever, solving (1) is NP-hard and intractable. The most popular
choice is to utilize the nuclear norm and l1-norm instead of
using the rank function and l0-norm, leading to the following
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convex optimization problem:

min
L,S
‖L‖∗ + λ‖S‖1, s.t. D = L+ S, (2)

where ‖L‖∗ =
∑
i σi is the nuclear norm; σi is the i-th sin-

gular value of the matrix L. ‖S‖1 is the l1-norm.

Various approaches have been developed for solving (2).
Examples include singular value thresholding [2], exact and
inexact augmented lagrange method [3], alternating direc-
tion method of multipliers [4], fast alternating linearization
method [5]. However, these approaches inevitably need to
calculate the singular value decomposition (SVD). Therefore,
with the increase of matrix dimension, computation com-
plexity exponentially increases. On the other hand, because
nuclear norm treats each singular value equally, this leads to
overshrinking the rank component. The main reason is that
larger singular values of an input data matrix quantify the
main information of its underlying principal directions. To
address this issue, several recent studies have investigated
non-convex sparsity-inducing regularizers, such as weighted
nuclear norm [6], capped norm [7], weighted Schatten p-
norm [8], log-determinant penalty [9], γ-norm [10]. Their
promising performance has been validated by extensive ex-
periments on background /foreground separation, face image
shadow removal, image inpainting, image alignment, and
multispectral/hyperspectral image denoising.

Another way to LRMA is low-rank matrix factorization
[11–13], i.e., L = UV T , where U ∈ Rm×r, V ∈ Rn×r and
r � min{m,n}. The low rank property is based on the fact
that rank(L) = rank(UV T ) ≤ min{rank(U), rank(V )}.
Considering the assumption that data noise may be modeled
as a mixture of Gaussians, Zhao et al. proposed a generative
RPCA model under the Bayesian framework. One bottleneck
of low-rank matrix factorization methods is that they usually
need to precisely predefine r, which is hard in practice.

Inspired by the promising performance of the non-convex
sparsity-inducing regularizer [10] and the low computational
cost of the low-rank matrix factorization technology, we pro-
pose a novel matrix-factorization-based RPCA model (MFR-
PCA).
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2. PROPOSED MFRPCA

In this section, we introduce the proposed MFRPCA model,
in which the low-rank property is realized by a matrix fac-
torization scheme and a non-convex sparsity-inducing regu-
larizer is used to improve the robustness and flexibility of the
traditional nuclear norm.

2.1. Problem formulation

The nuclear norm-based algorithms always suffer from high
computation cost issue due to computing SVDs in each iter-
ation. We adopt the matrix factorization approach to model
the low-rank prior of the underlying clean data. Therefore,
we write the observed data matrix D in model (1) as D =
UV T + S, where S represents the sparse error matrix, yield-
ing the following optimization problem:

min
U,V,S

‖S‖1
s.t. D = UV T + S.

(3)

For the model in (3), we should give the exact value of rank
r. However, in real applications, the prior information on
r is not present. To overcome this dilemma, we introduce
a non-convex low-rank regularizer defined in our previous
work [10]. And following the idea in [14], we enforce an
equality constraint UTU = I , where I is an identity matrix,
to facilitate the uniqueness of solution. Hereby, we obtain a
much smaller-scale minimization problem:

min
U,V,S

‖S‖1 + λ‖V ‖γ
s.t. D = UV T + S, UTU = I,

(4)

where ‖V ‖γ =
∑
i

(
1 − e−σi(V )/γ

)
, γ > 0 is a particu-

lar non-convex sparsity-inducing regularizer. λ is a trade-off
parameter to control the contribution between low-rank and
sparse priors. Compared with the convex model in (2), the
main advantage of our model in (4) lies in the fact that the
convex model in (2) is converted into a small-scale matrix
minimization problem, resulting in lower computational cost.
Another merit is that, as shown in our experimental results in
Section 3, our proposed model needs to know only a upper
bound of the true rank r by exploiting the non-convex reg-
ularizer. Whereas, the challenge of model in (4) is that the
sub-gradient method is no longer applicable due to the non-
convexity of ‖V ‖γ .

2.2. MFRPCA algorithm

Here, we solve our proposed model in (4) using the efficient
augmented Lagrangian multipliers (ALM) [3] method. The
partial augmented Lagrangian function of model in (4) is:

L(U, V, S,Π; ρ) = ‖S‖1 + λ‖V ‖γ +

〈Π, D − UV T − S〉+
ρ

2
‖D − UV T − S‖2F ,

(5)

where Π ∈ Rm×n is the Lagrangian multiplier correspond-
ing to constraint D = UV T + S and ρ is a positive scalar.
Here, an efficient alternating direction strategy was adopted
to iteratively minimize each variable by fixing all others as
follows:

Uk+1 = arg min
UTU=I

L(U, Vk, Sk,Πk; ρk); (6)

Vk+1 = arg min
V
L(Uk+1, V, Sk,Πk; ρk); (7)

Sk+1 = arg min
S
L(Uk+1, Vk+1, S,Πk; ρk); (8)

Πk+1 = Πk + ρk(D − Uk+1V
T
k+1 − Sk+1); (9)

ρk+1 = min{β ∗ ρk, ρmax}. (10)

where Uk denotes U in the k-th iteration, and β is set to 1.618
to further facilitate the convergence speed.

Update for U : In particular, for solving variable U , the
sub-problem is formulated as:

Uk+1 = arg min
UTU=I

ρk
2
‖UV Tk − (T − Sk)‖2F , (11)

where T = D+Πk/ρk. The closed-form solution to (11) can
be obtained using the classical Orthogonal Procrustes prob-
lem [15]. Suppose (T − Sk)V = AΣBT is SVD of matrix
(T − Sk)V , the optimal solution to sub-problem in (11) is

Uk+1 = ABT . (12)

Update for V : To solve the variable V , the optimization
problem is formulated as:

Vk+1 = arg min
V
‖V ‖γ +

ρk
2λ
‖V − (T −Sk)TUk+1‖2F . (13)

Note that the γ-norm is concave, the sub-problem in (13) is
non-convex. We utilize the Difference of Convex program-
ming [16] to efficiently solve (13).

Lemma 1 The sub-gradient of ‖V ‖γ is

∂‖V ‖γ = {AV diag(l)BTV }, (14)

where li = e
−σi(V )

γ /γ, the columns of AV and BV are the
left and right singular matrices of V , respectively.

Based on Lemma 1, the sub-problem in (13) can be changed
as

Vk+1 = arg min
V
〈∂‖Vk‖γ , V 〉+

ρk
2λ
‖V −(T−Sk)TUk+1‖2F

(15)
Then, the optimal solution to (15) is

Vk+1 = (T − Sk)TUk+1 − λ∂‖Vk‖γ/ρk. (16)

Update for S: To solve variable S, the optimization
problem is formulated as:

Sk+1 = arg min
S
‖S‖1 +

ρk
2
‖S − (T − Uk+1V

T
k+1)‖2F .
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It has a closed-form solution Sk+1 via the element-wise
shrinkage-thresholding operator [17], i.e.,

[Sk+1]i,j = max{|[Wk]i,j | − 1/ρk, 0}sign([Wk]i,j) (17)

where Wk = T − Uk+1V
T
k+1.

Algorithm 1 shows the detail procedures of MFRPCA.

Algorithm 1 MFRPCA algorithm

Input: The observed data matrix D, parameters λ, ρ0, β.
Initialize: λ, β, ε, ρ0, S0, V0, Π0, k.

1: while not converged do
2: Compute T = D + Πk/ρk;
3: Update Uk+1 by (12);
4: Update Vk+1 by (16);
5: Compute Wk = T − Uk+1V

T
k+1;

6: Update Sk+1 by (17);
7: Update Πk+1 by (9);
8: Update ρk+1 by (10);
9: Check the convergence condition

10: ‖D − Uk+1V
T
k+1 − Sk+1‖F ≤ ε ∗ ‖D‖F .

11: end while
Output: The low-rank matrix L = Uk+1V

T
k+1.

2.3. Complexity analysis

The computational complexity of MFRPCA is dominated by
updating variables: U and V . Updating U and V have a run-
ning time of O(mr2 + mnr) and O(nr2 + mnr), respec-
tively. To update S and Π all need O(mn) cost per iteration.
Therefore the total complexity of MFRPCA isO(mr2+mnr)
(m ≥ n).

3. EXPERIMENTAL RESULTS

The MATLAB (2012a) code was implemented on a personal
lenovo laptop with a 2.3GHz and 4GB of memory.

3.1. Experimental settings and implementation details

To test the performance of our proposed method, we consider
the following two applications:

(1) background extraction in surveillance videos; In sub-
section 3.2, our proposed method was compared
with the open source state-of-the-art RPCA-based
approaches: IALM [3], NcRPCA [18], GoDec [19],
and RBF [14];

(2) hyperspectral image denoising. In subsection 3.3, we
conduct experiments for hyperspectral image denois-
ing task with approaches: VBM3D [20], LRMR [21],
NAILRMA [22]. Note that these methods, especially
LRMR and NAILRMA, represent the state-of-the-art
HSI denoising methods.

We download the codes from the authors’ websites using their
default settings of parameters.

Fig. 1: Background extraction in three surveillance videos:
Car, Curtain, and Water surface. The first column: the
original frames of Car, Curtain, and Water surface, respec-
tively. Second column to the last column: estimated back-
grounds and foregrounds by IALM, NcRPCA, GoDec, RBF,
and MFRPCA, respectively.

3.2. Background extraction in surveillance videos

Background extraction in surveillance videos is an important
application of RPCA and a basic task in computer vision.
The parameters in our method are listed as follows: γ =
0.05, β = 1.618, ρ0 = 0.01, λ = 20. Since the back-
ground is static or approximately static, the rank of the back-
ground should be 1. In order to estimate the robustness of our
method, we set r = 5 which is an upper bound of the true
rank 1. In this subsection, we evaluate all methods on three
challenging datasets 1, as shown in Table 1.

The visual results of representative frames in three dif-
ferent surveillance videos are shown in Fig. 1. It is easy to
see that for all the testing data, MFRPCA is able to produce
clear background, as well as reconstructing a complete fore-
ground even under prominently embedded foreground mov-
ing objects. However, the competing methods either gener-
ate more or less artifacts/residuals in the background or can-
not completely detect the moving objects. As shown in the
last two rows in Fig. 1, backgrounds obtained by IALM and
NcRPCA still remain the shadow of the moving man. Similar
observation could be drawn from other two datasets.

We also provide some quantitative assessment results of
different background extraction approaches in Table 1, in
which RelErr is defined as ‖D−L−S‖F‖D‖F . As can be seen, the
number of iterations (Iter) of MFRPCA is much less than
these of other methods. Meanwhile, MFRPCA is the fastest

1http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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algorithm. This is due to the matrix factorization scheme
and non-convex low-rank regularizer. Note that RBF has the
similar visual performance with our proposed method, how-
ever, the running time of RBF is two times longer than that
of MFRPCA. Although we set r = 5, the low-rank matrix
L recovered by MFRPCA is still with the true rank 1, indi-
cating that our proposed method is more robust than other
competing methods.

Table 1: Quantitative results on three real datasets

Data (size) Algorithm Rank(L) ‖S‖0mn RelErr Iter Time(s)

Car (240×
320× 24)

IALM 8 0.644 9.47e-4 16 4.66
NcRPCA 5 0.624 7.13e-4 58 27.02
GoDec 5 0.977 1e-6 101 50.57
RBF 5 0.717 7.95e-4 24 3.54

MFRPCA 1 0.772 7.98e-4 12 1.92

Curtain
(128× 160×
633)

IALM 100 0.745 6.33e-4 20 54.60
NcRPCA 5 0.823 7.62e-4 41 42.84
GoDec 5 0.219 1.04e-2 101 155.65
RBF 2 0.901 8.72e-4 25 13.35

MFRPCA 1 0.845 9.08e-4 12 6.53

Water surface
(128× 160×
633)

IALM 211 0.733 8.67e-4 20 139.83
NcRPCA 5 0.909 2.38e-4 46 76.45
GoDec 5 0.139 2.29e-2 101 224.82
RBF 1 0.837 9.78e-4 23 26.91

MFRPCA 1 0.855 8.05e-4 12 10.93

3.3. Hyperspectral image denoising

HSI denoising has aroused increasing attention on various
fields, including environmental studies, military surveillance,
and biomedical imaging. However, HSIs are inevitably cor-
rupted by Gaussian, impulse noise, stripes, dead lines, and
many others [21]. Therefore, it is very important to remove
the HSI noise. Fortunately, the denoising methods based on
low-rank matrix approximation [10, 21, 22] have achieved
promising performance in HSI denoising.

In this experiment, we select a real-world HSI dataset
(EO-1 Hyperion Australia dataset) 2 to investigate the per-
formance of our proposed method. The size of original image
is 3858 × 256 × 242. Here, we use only a subregion of size
400 × 200 × 150 in our experiment. And the parameters of
our method are: γ = 0.05, β = 1.5, ρ0 = 0.005, λ = 1.

The restoration results of three typical bands of EQ-1 Hy-
perion Australia dataset are shown in Fig. 2. The original
bands, see the first column of Fig. 2, are contaminated by the
mixture of Gaussian noise, impulse noise, stripes, and dead
lines. It is easy to see that MFRPCA could effectively re-
move the mixed noise, and meanwhile, preserve the essential
structures of HSIs. All other competing methods could re-
duce the mixed noise to a certain level. VBM3D suffers from
oversmoothing the results and fails to restore images with

2http://remote-sensing.nci.org.au/

heavy noise. LRMR and NAILRMA can partially remove
noise. When handing the dead lines, all the restored results
by VBM3D, LRMR, and NAILRMA (see the third row) are
presented ghosting shadow more or less at band 123. Only
the proposed method achieves a desirable result. The experi-
mental results show that our algorithm has a great advantage
of removing stripes and dead lines.

Fig. 2: Denoising results of EO-1 Hyperion Australia dataset.
The three rows from top to bottom are the bands located at 83,
88 and 123; the five columns from left to right are the original
bands with mixed noise and the restored bands obtained by:
VBM3D, LRMR, NAILRMA, and MFRPCA, respectively.

4. CONCLUSION

In this paper, we have proposed a novel matrix factorization-
based RPCA (MFRPCA) model. Compared with the nuclear
norm-based approaches, MFRPCA uses the matrix factor-
ization scheme to facilitate the computation speed, and pre-
serves the low-rank property of the underlying data. To fur-
ther improve the robustness of the traditional nuclear norm,
MFRPCA adopts a non-convex sparsity-inducing regular-
izer to give an upper-bound of the true rank. To validate
the effectiveness of MFRPCA, we have tested them on two
important applications: background subtraction in surveil-
lance videos and hyperspectral image denoising. Experiment
results demonstrated the efficiency, effectiveness, and robust-
ness of MFRPCA.
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